Monotone Closure of Relaxed Constraints in Submodular Optimization: Connections Between Minimization and Maximization
نویسندگان
چکیده
It is becoming increasingly evident that many machine learning problems may be reduced to submodular optimization. Previous work addresses generic discrete approaches and specific relaxations. In this work, we take a generic view from a relaxation perspective. We show a relaxation formulation and simple rounding strategy that, based on the monotone closure of relaxed constraints, reveals analogies between minimization and maximization problems, and includes known results as special cases and extends to a wider range of settings. Our resulting approximation factors match the corresponding integrality gaps. For submodular maximization, a number of relaxation approaches have been proposed. A critical challenge for the practical applicability of these techniques, however, is the complexity of evaluating the multilinear extension. We show that this extension can be efficiently evaluated for a number of useful submodular functions, thus making these otherwise impractical algorithms viable for real-world machine learning problems.
منابع مشابه
Monotone Closure of Relaxed Constraints in Submodular Optimization: Connections Between Minimization and Maximization: Extended Version
It is becoming increasingly evident that many machine learning problems may be reduced to some form of submodular optimization. Previous work addresses generic discrete approaches and specific relaxations. In this work, we take a generic view from a relaxation perspective. We show a relaxation formulation and simple rounding strategy that, based on the monotone closure of relaxed constraints, r...
متن کاملSubmodular problems - approximations and algorithms
We show that any submodular minimization (SM) problem defined on linear constraint set with constraints having up to two variables per inequality, are 2-approximable in polynomial time. If the constraints are monotone (the two variables appear with opposite sign coefficients) then the problems of submodular minimization or supermodular maximization are polynomial time solvable. The key idea is ...
متن کاملMaximizing Non-monotone Submodular Functions under Matroid and Knapsack Constraints
Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...
متن کاملMaximizing Nonmonotone Submodular Functions under Matroid or Knapsack Constraints
Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...
متن کاملOn maximizing a monotone k-submodular function subject to a matroid constraint
A k-submodular function is an extension of a submodular function in that its input is given by k disjoint subsets instead of a single subset. For unconstrained nonnegative ksubmodular maximization, Ward and Živný proposed a constant-factor approximation algorithm, which was improved by the recent work of Iwata, Tanigawa and Yoshida presenting a 1/2-approximation algorithm. Iwata et al. also pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014